skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Hardman, Matthew F"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The origin of the eclogites that reside in cratonic mantle roots has long been debated. In the classic Roberts Victor kimberlite locality in South Africa, the strongly contrasting textural and geochemical features of two types of eclogites have led to different genetic models. We studied a new suite of 63 eclogite xenoliths from the former Roberts Victor Mine. In addition to major- and trace-element compositions for all new samples, we determined 18O/16O for garnet from 34eclogites. Based on geochemical and textural characteristics we identify a large suite of Type I eclogites (n = 53) consistent with previous interpretations that these rocks originate from metamorphosed basaltic-picritic lavas or gabbroic cumulates from oceanic crust, crystallised from melts of depleted mid-ocean ridge basalt (MORB) mantle. We identify a smaller set of Type II eclogites (n = 10) based on geochemical and textural similarity to eclogites in published literature. We infer their range to very low δ18O values combined with their varied, often very low zirconium-hafnium (Zr-Hf) ratios and light rare earth element-depleted nature to indicate a protolith origin via low-pressure clinopyroxene-bearing oceanic cumulates formed from melts that were more depleted in incompatible elements than N-MORB. These compositions are indicative of derivation from a residual mantle source that experienced preferential extraction of incompatible elements and fractionation of Zr/Hf during previous melting. 
    more » « less